Multicolor spectral karyotyping identifies new recurring breakpoints and translocations in multiple myeloma.
نویسندگان
چکیده
Karyotypic information on multiple myeloma (MM) is less extensive than that on other myeloid or lymphoid malignancies due to low mitotic activity of plasma cells. An add(14)(q32) marker chromosome has been reported to be the most frequent recurring abnormality in clonally abnormal cases; in approximately one third of the latter cases, this marker has been identified as a der(14)t(11;14)(q13;q32) chromosome. To map chromosomal breakpoints, characterize the add(14)(q32) marker chromosomes, and to identify other recurring translocations in MM, we used spectral karyotyping (SKY) to analyze a panel of nine bone marrow (BM) biopsy samples from eight patients and 10 tumor cell lines derived from MM patients. SKY involves hybridization of 24 fluorescently labeled chromosome painting probes to metaphase spreads in such a manner that simultaneous visualization of each of the chromosomes in a different color is accomplished. By this method, it was possible to define all chromosomal rearrangements and identify all of the clonal marker chromosomes in tumor cells. By detailed mapping of breakpoints of rearrangement, it was also possible to identify several novel recurring sites of breakage that map to the chromosomal bands 3q27, 17q24-25, and 20q11. The partner chromosomes in translocations that generated the add (14)(q32) marker chromosomes were identified in all cases in which they were detected by G-banding (one biopsy and six cell lines). In addition, two new translocations involving band 14q32, ie, t(12;14)(q24;q32) and t(14;20)(q32;q11) have also been identified. These studies demonstrate the power of SKY in resolving the full spectrum of chromosome abnormalities in tumors.
منابع مشابه
Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyotyping.
Multicolor spectral karyotyping (SKY) was performed on bone marrow samples from 50 patients with multiple myeloma (MM) in anticipation of discovering new previously unidentified translocations. All samples showed complex karyotypes with chromosome aberrations which, in most cases, were not fully characterized by G-banding. Patients of special interest were those who showed add(14)(q32), add(8)(...
متن کاملSpectral karyotyping identifies new rearrangements, translocations, and clinical associations in diffuse large B-cell lymphoma.
Diffuse large B-cell lymphoma (DLBCL), a histologically well-defined subset of non-Hodgkin lymphoma, is clinically and genetically heterogenous. By G-banding, most cases showed complex hyperdiploid karyotypes and diverse cytogenetic abnormalities that included recurring and nonrecurring translocations, deletions, duplications, and marker chromosomes. While G-banding provided valuable leads to i...
متن کاملSpectral karyotyping combined with locus-specific FISH simultaneously defines genes and chromosomes involved in chromosomal translocations.
Genes that play roles in malignant transformation have often been found proximate to cancer-associated chromosomal breakpoints. Identifying genes that flank chromosomal reconfigurations is thus essential for cancer cytogenetics. To simplify and expedite this identification, we have developed a novel approach, based on simultaneous spectral karyotyping and fluorescence in situ hybridization (FIS...
متن کاملIdentification of new translocations involving ETV6 in hematologic malignancies by fluorescence in situ hybridization and spectral karyotyping.
TEL/ETV6 is the first transcription factor identified that is specifically required for hematopoiesis within the bone marrow. This gene has been found to have multiple fusion partners; 35 different chromosome bands have been involved in ETV6 translocations, of which 13 have been cloned. To identify additional ETV6 partner genes and to characterize the chromosomal abnormalities more fully, we st...
متن کاملA transgenic mouse model of plasma cell malignancy shows phenotypic, cytogenetic, and gene expression heterogeneity similar to human multiple myeloma.
Multiple myeloma is an incurable plasma cell malignancy for which existing animal models are limited. We have previously shown that the targeted expression of the transgenes c-Myc and Bcl-X(L) in murine plasma cells produces malignancy that displays features of human myeloma, such as localization of tumor cells to the bone marrow and lytic bone lesions. We have isolated and characterized in vit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 92 5 شماره
صفحات -
تاریخ انتشار 1998